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The bilayer quantum Hall system at a total filling of �T=1 has long resisted explanation in terms of a true
counterflow superfluid, though many experimental features can be seen to be “almost” that of a superfluid. It
is widely believed that quenched disorder is the root cause of this puzzle. Here we model the nonperturbative
effects of disorder by investigating the �=1 bilayer in a strong periodic potential. Our model assumes that
fermions are gapped and real spins are fully polarized, and concentrates on the pseudospin variable �the layer
index�, with the external potential coupling to the topological �Pontryagin� density of the pseudospin. We find
that as the potential strength increases, there are ground-state transitions in which the topological content of the
pseudospin configuration changes. These transitions are generically weakly first order with a new quadratically
dispersing mode �in addition to the linearly dispersing Goldstone mode� sometimes becoming nearly gapless
near the transition. We show that this leads to strong suppressions of both the Kosterlitz-Thouless transition
temperature and the interlayer tunneling strength, which we treat perturbatively. We discuss how these results
might extend to the case of true disorder.

DOI: 10.1103/PhysRevB.81.195314 PACS number�s�: 73.50.Jt

I. INTRODUCTION

It has long been expected theoretically that bilayers offer
the possibility of Bose condensation of interlayer excitons.1

While investigations in electron-hole bilayers are ongoing,2

the electron bilayer system in a large magnetic field at total
electron filling �=1 offers a different way of realizing this
goal.3 There are two important length scales in this system,
the interlayer separation d and the magnetic length l=� �

eB ,
�MKS units�, where e is the magnitude of the electron charge
and B is the magnetic field. In addition to the dimensionless
tuning parameter d / l, there may also be a layer imbalance
�↑−�↓, where ↑ ,↓ refer to the top and bottom layer, and an
in-plane field B�. The discussion in this paper will be re-
stricted to the case of balanced layers with �↑=�↓= 1

2 and
B� =0. Even with layer imbalance, by a particle-hole trans-
formation in one layer, one can immediately see the possi-
bility of exciton formation and condensation for small d / l.

The first theoretical works on this system two decades ago
predicted in the clean limit that at T=0 and small d / l, the
system could be thought of either as a exciton Bose conden-
sate or as a pseudospin quantum Hall ferromagnet4 with a
planar anisotropy. The presence of a gapless, linearly dis-
persing, Goldstone mode �in the absence of interlayer tunnel-
ing� was noted5 indicating a spontaneous broken symmetry,
as was the expectation that when the interlayer tunneling
amplitude h became nonzero but small compared to the other
energy scales, there would be a delta-function peak in the
interlayer conductance GIL at zero bias.6 Upon the applica-
tion of an in-plane field B�, the peak is expected to split into
two symmetric peaks separated by a bias voltage propor-
tional to B�.7 Furthermore, the tunneling is expected to occur
within a Josephson length �lJ=� J

h , with J being the pseu-
dospin stiffness� of the contacts.6,7 Finally, for h=0, a
Berezinskii-Kosterlitz-Thouless �BKT� transition8,9 at a non-
zero temperature TKT is expected, and the counterflow con-
ductance, where current flows in opposite directions in the

two layers, is expected to be infinite for T�TKT.7 An excel-
lent review summarizes the theoretical expectations in the
clean system.10

Experimentally, it is found that as d / l varied, there is a
transition11 between a compressible phase with unquantized
Hall conductance for large d / l �presumably adiabatically
connected to a system with two decoupled �= 1

2 composite
fermion12 Fermi seas13 in the two layers� and an incompress-
ible phase for d / l�1.6 with a quantized Hall conductance.

Where the experimental results deviate from theoretical
expectations is in the interlayer tunneling14–16 and
counterflow17 properties of the incompressible phase. It is
never possible in an experimental sample to make h precisely
zero, but it can be made much smaller �of order 100 �K�
than any other energy scale, including the temperature. In
such samples, there is a peak at zero bias in GIL, but its width
remains nonzero even at the lowest temperatures.14 Upon the
application of an in-plane field, features at nonzero bias are
seen to vary in a linear manner with B�, but the peak at zero
bias remains,16 contrary to theoretical expectations, and re-
tains most of the weight. The counterflow conductivity in-
creases as T decreases but remains finite down to the lowest
measured T.17 Contrary to theoretical expectations, interlayer
tunneling occurs throughout the area of the sample18 rather
than within a Josephson length of the contacts. Recently,
critical interlayer tunneling currents have been measured19

�with some puzzling aspects20�, and are also found to be
proportional to the area of the sample. Finally, while a sharp
drop in the peak value of the interlayer conductance is seen
at a particular T, the phenomenology of this nonzero-
temperature transition21 �if indeed it is a thermodynamic
transition� does not seem to be Berezinskii-Kosterlitz-
Thouless type.

Much theoretical work5–7,22–43 has been carried out on this
system in the past two decades in several directions. We will
not attempt to review the vast literature, except to comment
that no satisfactory fundamental explanation of the entire
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spectrum of discrepancies noted above has been proposed
yet. It has been recognized that an extra mechanism of dis-
sipation seems to be active in this system, as seen in the
finite value of the counterflow conductivity,17 and in the non-
zero width of the zero-bias peak in GIL. Assuming such a
mechanism phenomenologically, several authors have suc-
cessfully described some fraction of the experimental results,
as, for example, in Ref. 24. Recent efforts have focused on
the effects of quenched disorder30,31,33,36,37,39–42 and suc-
ceeded in explaining some aspects of the experiments. The-
oretical evidence from studies of critical counterflow32 and
tunneling currents43 also lead to the identification of
quenched disorder as the root cause of the discrepancies be-
tween theory and experiment.

In this paper we will start with the assumption that
quenched disorder is responsible for the qualitative differ-
ences between theory in the clean limit and experiment. As
Efros44 showed long ago, in any incompressible system, dis-
order necessarily has a nonperturbative effect, because the
clean system cannot screen linearly. In two-dimensional elec-
tron gases �2DEGs�, there is the further feature that the fluc-
tuations of the disorder potential, created by positional fluc-
tuations of the remote dopants, diverge at long distances.
Briefly, the argument is as follows: let the distance to the
dopant layer be s and the Fourier transform of the inhomo-
geneities in the dopant distribution be �nimp�q�. Then the
potential at the 2DEG is

Vimp�q� =
2��nimp�q�e−qs

�q
. �1�

Assuming an uncorrelated set of dopant inhomogeneities
��nimp�q��nimp�q���=Cnimp

2 �2�q+q�� we obtain

�Vimp�q�Vimp�q��� =
Cnimp

2 e−2qs�2�q + q��
�2q2 . �2�

Upon transforming back to real space the 1 /q2 gives rise to
logarithmically divergent fluctuations of the disorder
potential.45

In the semiclassical Efros picture, the quantum Hall sys-
tem screens by forming compressible puddles �of typical size
s, the distance between the 2DEG and the dopant layer� sepa-
rated by incompressible strips of width a few magnetic
lengths. This picture is supported by imaging experiments.46

Based on this picture of strong smooth disorder, two of the
present authors previously presented39 a classical coherence
network model displaying some of the experimental phe-
nomenology, such as the proportionality of the interlayer tun-
neling conductance to the area18 rather than length of the
contacts. A more detailed, though still classical, calculation42

has recently used the coherence network model to predict a
large enhancement of the Josephson length due to disorder.

Here we take a slightly different approach, inspired by
studies of the Bose-Hubbard model47 and one-component
quantum Hall systems in a periodic potential.48 These studies
were motivated by trying to develop a field-theoretic under-
standing of the superfluid-Mott Insulator transition for
bosons or the plateau transition for quantum Hall systems.
Note that without a potential, Galilean invariance means that

one cannot even obtain a transition in both these cases. Once
a second-order transition has been obtained in the presence
of a periodic potential, one may examine the relevance or
irrelevance of operators pertaining to various kinds of
disorder49 at this fixed point.

Combining ideas from the Efros picture44 and the plateau
transition work,48 one may hope that a periodic potential will
capture the essential nonperturbative features of quenched
disorder, and true disorder can be added later.49 In this paper
we will carry out the first part of this program, ending with
some speculations regarding true quenched randomness at
the end.

As a further simplification, we will assume that fermionic
degrees of freedom are gapped out and focus exclusively on
the pseudospin degrees of freedom as the only relevant ones.
This also involves freezing out the real spin, which may not
be quite correct for typical experimental samples.50,51 How-
ever, recently it has been shown that the interlayer coherent
phase is robust to large Zeeman energies and survives full
polarization of real spin.52 Our study will be of direct rel-
evance to that system, and the qualitative results will likely
hold for the low Zeeman energy case as well. From now on,
we will refer to “spin” always meaning the pseudospin vec-
tor, represented by a unit vector n. An important ingredient is
the spin-charge relation,53,54 which holds in multicomponent
systems in a quantum Hall phase.7,10 In our context, this
states that slow variations in spin contain Coulomb charge,

�	�r� =
e

4�
n · ��xn 
 �yn� . �3�

It is primarily through this �	 that the spins couple to the
external potential. For ease of computation we will put our
spins on a square lattice with the lattice spacing chosen to be
on the order of the magnetic length l. In this case the above,
continuum, expression has to be replaced with the spherical
area55 subtended by the three noncoplanar spins n1 ,n2 ,n3,

�Q123 =
e

2�
tan−1� n1 · n2 
 n3

1 + n1 · n2 + n2 · n3 + n3 · n1
� . �4�

The Hamiltonian of our model has the form

H = − J 	
�rr��


nx�r�nx�r�� + ny�r�ny�r��� +
�

2 	
r


nz�r��2

− h	
r

nx�r� − V0	
�

f�X,Y��Q� + HU��Q2� . �5�

Here J is the nearest-neighbor ferromagnetic coupling, and is
related to the continuum spin stiffness, � is the interlayer
charging energy, h is the interlayer tunneling amplitude, and
V0 is the strength of the periodic potential with f�X ,Y� being
its specific functional form, defined on dual lattice sites R
= �X ,Y�. The sum in the third term, 	�, refers to a sum over
plaquettes of the lattice, and we have also introduced a local
Hubbard interaction HU to model the energy cost �of order
the interaction scale Ec= e2

�l � of localizing a charge within a
distance of l. We will specify the precise form of these last
two terms in the next section. Most of our results are for J
=�, with our Hubbard U being about ten times J, for differ-
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ent values of V0. We also vary the size of the unit cell be-
tween 12
12 and 16
16 lattice sites, with each represent-
ing an area of order 100–300l2�s2 �s is the distance
between the 2DEG and the dopant layer�, consistent with
values of the expected size of Efros puddles for relevant
experimental samples.

Note that in bilayers, there are typically two dopant layers
situated symmetrically with respect to the two layers. In ad-
dition to the sum of the potentials due to the randomness in
each layer, which we have modeled by a periodic potential
coupling to the total charge, there is also an antisymmetric
part which is an effective interlayer random potential favor-
ing local layer imbalance. If the interlayer distance is d�s,
then the antisymmetric potential of a point charge in the
dopant layer at two-dimensional position r is roughly a de-
rivative of the symmetric part with respect to s,

VA�r� =
e2

�
� 1

�s2 + r2
−

1
��s + d�2 + r2� �

e2sd

��s2 + r2�3/2 .

�6�

Taking the s derivative of the Fourier transform of Eq. �1� we
obtain

VA�q� 
2�nimp�q�e2e−qsd

�
, �7�

which is a short-range potential. The absence of the q in the
denominator compared to Eq. �1� renders the fluctuations of
the antisymmetric part finite and small compared to the sym-
metric part. We will therefore ignore this antisymmetric po-
tential in our calculations and comment in the final section
on how its inclusion might be expected to alter some aspects
of our conclusions.

Our results, which we summarize here, and elaborate
upon in later sections, show that there are some surprising
features present in this model. Consider first h=0. We find a
sequence of ground-state transitions where the topological
content of the spin configuration changes. For sufficiently
large U, the first transition is second order while the others
are generically weakly first order. There is always a linearly
dispersing Goldstone mode �which we will henceforth call
the G mode� indicating the broken U�1� symmetry for h=0.
The next higher mode is usually quadratically dispersing �we
will call it the Q mode� with a gap that sometimes becomes
very small near the transitions. In the case when the transi-
tion is continuous, the gap of the Q mode vanishes at the
transition continuously. It is important to note that true dis-
order will generically convert first-order transitions to second
order,57 and thus the Q mode is expected to be truly gapless
at the ground-state transitions in the disordered model. Two
distinct effects can be traced to the transitions and the prop-
erties of the Q mode near them. At values of V0 near the
transitions, there are configurations close in energy with a
different topological density, which means that the system
becomes highly polarizable. In an effective XY model �to be
described in section� this leads to a greatly reduced core
energy for vortices, or a greatly increased fugacity, which
strongly suppresses the KT-transition temperature. Second,
when the Q-mode gap is small, thermal fluctuations of the Q

mode are present at realistic temperatures, and strongly sup-
press the interlayer tunneling amplitude h. Finally, the low-
lying Q excitations offer one possible microscopic mecha-
nism for the pervasive and puzzling dissipation seen in
experiments. These are the main results of our work.

Let us remark briefly about the realistic case h�0 but
smaller than any other energy scale in the problem, including
the temperature. The ground-state phase transitions are con-
trolled by the competition between the core energies of
merons/antimerons and the external potential. Both these are
on the scale of Ec. Therefore, we expect a nonzero but tiny
h�T ,V ,Ec will not affect the transitions in any qualitative
way. Similarly, for the collective mode dispersions, the pri-
mary effect of a tiny h is to gap the G mode at q=0. We
expect all other modes to be robust against the introduction
of a small h.

It is important to note that in the clean system, h is rel-
evant below TKT,9 and the regimes of small and large h are
adiabatically connected to each other, with no phase-
transition separating them. This is not true for the system
with a periodic potential or strong, smooth disorder. As h is
increased while all other parameters �such as Ec and V� are
kept fixed, the system will undergo ground-state phase tran-
sitions in which the topological density reduces, presumably
becoming the uniform ferromagnetic state for very large h
V. This qualitative distinction between weak and strong
tunneling in the presence of a periodic potential �and pre-
sumably a strong smooth disorder potential� is consistent
with experiments, which see the almost-superfluid phenom-
enology only for weak h.

The plan of this paper is as follows: In Sec. II we will
present the precise definition of our model and present
sample ground-state configurations. Section III presents our
method for computing the collective mode spectra of excita-
tions above the ground state, and discusses the effects of the
potential strength V, the interlayer tunneling h, and the inter-
action strength U on this. This is followed by a discussion of
how one may extract the spin stiffness of our model from the
numerical results. Section IV discusses two nontrivial fluc-
tuation effects in this system, first how the quadratically dis-
persing collective mode can suppress interlayer tunneling,
and then the suppression of TKT near quantum phase transi-
tions due to vortex excitations. We end with some conclu-
sions, caveats, and speculations on what our studies tell us
about the case of true disorder in Sec. V.

II. MODEL AND GROUND STATES

The form of the Hamiltonian of our model, Eq. �5�, is
guided by the following considerations: �i� we ignore fermi-
onic excitations at the very outset, since in any incompress-
ible state, the energy to create a fermion is on the order of the
Coulomb scale Ec, which is much larger than the other rel-
evant energy scales. Similarly we ignore the dynamics of the
real spin, assuming that it is fully polarized.52 �ii� We put the
system on a lattice for computational convenience.28 As long
as all the relevant length scales, such as the size of the
puddles, are much larger than the chosen lattice scale, we
expect that our results will be physically correct. To be spe-
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cific, we will choose the lattice spacing a= l�2� such that
each elementary plaquette has the area of one cyclotron orbit,
and at �T=1, has one electron. �iii� In the continuum, when
there is no external potential, the Hamiltonian should reduce
to the continuum form7 in the long-wavelength limit. �iv�
The coupling of the external potential to the spin �i.e., layer�
degrees of freedom must be through the lattice
generalization55 of the topological charge.53,54 �v� To account
for short-distance effects beyond the spin stiffness, we intro-
duce a Hubbard on-plaquette interaction term. �vi� Finally,
we ignore the long-distance component of the Coulomb in-
teraction between induced charges for computational conve-
nience, assuming that the Hubbard term can capture all
qualitative effects.

We are now ready to make the form of the Hamiltonian
precise. We consider a square lattice of points labeled by r,
with the corresponding dual lattice labeled by R, with the
convention that the site R corresponding to r lies half a
lattice unit to the right and above r. The external potential
naturally lives on the dual lattice. Each dual site R defines a
plaquette, whose sites can be labeled r1 ,r2 ,r3 ,r4, starting
from r=r1 and going counterclockwise. The topological
charge corresponding to a given triplet of spins was given
above in Eq. �4�. The charge in a plaquette is defined as

�Q��R� = �Q123 + �Q134 = �Q124 + �Q234. �8�

To fully specify the third term on the right-hand side of
Eq. �5� we need the functional form of f�X ,Y�. We choose
the simplest possible periodic form

f�X,Y� = sin�2�X

Na
�sin�2�Y

Na
� . �9�

Na is the size of the unit cell, which contains four puddles.
We have experimented with other forms and observed no
qualitative differences. Finally, we turn to the last term of
Eq. �5�. In order to eliminate spurious configurations with
equal and opposite topological charges in triplets 123 and
134 but no net charge in the plaquette, we write the Hubbard
term as the symmetrized sum of all the triplets in a plaquette,

HU =
U

4 	
R


��Q123�2 + ��Q134�2 + ��Q124�2 + ��Q234�2� .

�10�

Hartree-Fock calculations are a reasonable starting point
for estimating the values of the various parameters entering
the Hamiltonian. J and � are on the order of a few percent of
Ec in such calculations, while U should be on the order of Ec,
being the energy to localize a charge of order e within a
length scale l. We will typically assume J=� and U between
8 and 20 times J. Most of our results are for the size of the
unit cell being N=16 but we will show results for N=12 as
well. These values are realistic given l�200 Å and the dis-
tance to the dopant layer s�2000 Å.

We parametrize the spins by z�r��nz�r� and ��r�
which is the XY angle 
nx�r�=�1−z�r�2cos ��r� , ny�r�
=�1−z�r�2sin ��r��. We find the ground-state configurations
by starting with a random seed configuration, followed by
simulated annealing. Several different random seeds were

tried at every value of V0 to eliminate the possibility of set-
tling into a metastable minimum.

We begin by showing the ground-state spin configuration
for a 16
16 unit cell at V=3 and U=8 �in units of J=�
=1�. As shown in Fig. 1, there is a vortex/antivortex at the
center of each puddle, partially screening the external poten-
tial. The length of the arrow indicates the projection of the
spin in the xy plane while the color indicates whether the
spin points in the up or down direction in z. A different way
to plot the same configuration is to look instead at the topo-
logical density of the spins. This is shown as a three-
dimensional plot in Fig. 2. A more complicated configuration
is shown in Fig. 3, where V has now been increased to 7.
Each puddle now has two vortex-antivortex pairs. The cor-
responding topological density is plotted as a contour plot in
Fig. 4. The phase transitions correspond to values of V where
the ground-state energy of one configuration becomes lower
than another. The very first of these transitions �for suffi-
ciently large U� is second order. For small V the ground state

FIG. 1. �Color online� The ground-state configuration for a 16

16 unit cell with the strength of the periodic potential �in units
where J=1� being V=3.0 and the Hubbard interaction is U=8.0.
The lengths of the spins denote their planar projection. Note a
vortex/antivortex at the center of each puddle.

FIG. 2. �Color online� The topological density of the spins in the
ground-state configuration for a 16
16 unit cell with V=3.0 and
U=8.0 shown as a three-dimensional plot.
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is uniform and ferromagnetic as at V=0. At a critical V=Vc
�which happens to be Vc=4.2 for U=18� there is an instabil-
ity of the ground state, which, when followed, leads to a
ground state with a nonzero topological density. While the
very first of these transitions is second order, the rest seem to
generically be weakly first order. The ground-state energies
cross with different slopes as functions of V.

In Fig. 5 we show the ground state of the 12
12 unit cell
at V=3 and U=8. The presence of two vortex-antivortex
pairs is evident, as is the qualitative similarity to the case of
the 16
16 unit cell of Fig. 1. Generally, we find that all the
qualitative features of the different ground states are the
same for different sizes of the unit cell but the specific values
at which the transitions happen do depend on unit cell size.

III. DEVIATIONS FROM THE GROUND STATE

Having obtained classical ground states of this system, we
are in a position to consider the energetics and dynamics
associated with deviations from it. In what follows we will
focus on small deviations, such that the system can be ana-
lyzed within a quadratic theory. Two types of quantities are

of particular interest, the collective modes of the system, and
the effective spin stiffness. The first of these can be used to
explore the effects of thermal fluctuations and the second is
important in determining the effects of thermally generated
vortices �i.e., Kosterlitz-Thouless physics.�

A. Collective modes

Once a periodic ground-state configuration z̄�r� , �̄�r� has
been found, one can look at collective mode dynamics
around this state. For dynamics, one needs the full action,
which is

S = SB −� dtH , �11�

where SB, the Berry phase term,56 measures the spherical
area covered by a closed path followed by a spin in time,

SB =
�

2
� dt�

0

1

d�	
r

n�r,t,�� · �tn�r,t,�� 
 ��n�r,t,�� .

�12�

Here � is an auxiliary variable and n�r , t ,�� is chosen such
that at n�r , t ,0�= êz and n�r , t ,1��n�t ,r�.22 Also, we have
made the � explicit and assumed that the spin is 1

2 . This is
reasonable since the underlying fermionic system has one
electron per cyclotron orbit; with our choice of lattice spac-
ing this translates to one electron per site.

The Berry phase term may be conveniently expressed as

SB =� dt
1

2	
r


z�r��̇�r� − ��r�ż�r�� . �13�

Following standard methods, and recalling that any variation
in n has to be perpendicular to n we obtain the equation of
motion

FIG. 3. �Color online� The ground-state configuration for V
=7.0 and U=8.0.

FIG. 4. �Color online� The topological charge in the ground-
state configuration for V=7.0 and U=8.0.

FIG. 5. �Color online� The configuration of the 12
12 lattice at
V=3 and U=8. Comparing to Fig. 1 we see that the presence of the
vortex-antivortex pairs is independent of the size of the unit cell,
though the values of critical V at which the ground-state transitions
take place are different.
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�tn = n 

�H
�n

. �14�

The ground-state configuration is static and satisfies

� �H
�z�r�

�
z̄,�̄

=� �H
���r�

�
z̄,�̄

= 0. �15�

Expanding in small fluctuations around the ground state,

z�r� = z̄�r� + ��r�, ��r� = �̄�r� + ��r� , �16�

we obtain the linearized equations of motion

�̇�r� = −
�2H

���r� � z�r��
��r�� −

�2H
���r� � ��r��

��r�� ,

�̇�r� =
�2H

�z�r� � z�r��
��r�� +

�2H
�z�r� � ��r��

��r�� . �17�

As can be seen, the Hessian matrix of second derivatives
�computed at the ground-state configuration� appears on the
right-hand side,

Hss��r,r�� =
�2H

�w�r,s� � w�r�,s��
, �18�

where we have introduced indices s ,s� taking the values 1,2
for � and �, respectively, thereby organizing ��r�
=w�r ,1� , ��r�=w�r ,2� into a two-component vector. It is
important to note that for h=0 one can rotate all the � by the
same amount producing no change in energy, which means
that the Hessian matrix H has an eigenvector with a zero
eigenvalue.

The next step is to exploit the larger unit cell and partially
diagonalize the system in terms of a wave vector k lying in
the Brillouin zone �BZ�, arranging the 2N2 variables in a unit
cell into a single vector. We can now define the 2N2
2N2

matrices

H̃ss��k:r,r�� = e−ik·�r−r��Hss��r,r�� , �19�

Kss��r,r�� = ��2�ss� � �r,r�, �20�

where �2 is a Pauli matrix. It is henceforth understood that in
all matrices r ,r� are restricted to a single unit cell. Note that
both matrices are Hermitian but differ under transposition,


H̃�k��T = H̃�− k� ,

KT = − K . �21�

The earlier condition on the Hessian having an eigenvector
with zero eigenvalue translates to the vanishing of the small-

est eigenvalue of H̃ as k→0. This will be important for the
computation of the spin stiffness.

Now the equations of motion can be written in a compact
form

�K�
R��k� = H̃�k��
R��k� . �22�

This is a generalized eigenvalue problem with both K and H̃
being Hermitian. We first solve for the eigenvalues and
eigenvectors of the auxiliary problem

KH̃��

R��k� = ���k���


R��k� �23�

to get the right eigenvectors ��

R�. Taking the Hermitian ad-

joint and carrying out a few manipulations, one obtains the
left eigenvectors


��
�R��k��†K = ��

�L��k� . �24�

Using the hermiticity of K and H̃, and Eqs. �21� and �24� it is
easy to show that the eigenvalues occur in pairs with equal
magnitude and opposite sign.

The normalization condition on the eigenvectors can be
chosen to be


��
�R��k��†K���

�R��k� = sgn
���k������, �25�

where the sgn���� is essential because K is not positive defi-
nite. Now, as a consequence of Eqs. �23� and �25� the eigen-
vectors also satisfy


��
�R��k��†H̃���

�R��k� = ����k������. �26�

Henceforth we will use only the right eigenvectors, dropping
the superscript 
R�.

We find the following results for the collective mode dis-
persions as functions of V. Since we set the interlayer tun-
neling h=0, there is always a gapless, linearly dispersing,
Goldstone mode arising from the breaking of the continuous
U�1� global symmetry. We will henceforth call this the G
mode. The G mode is generically the lowest mode through-
out the BZ but may not be so close to a transition. The next
higher-energy mode is quadratically dispersing at q=0 and
will play an important role in what follows. We will hence-
forth call it the Q mode. At the first transition, which is
second order for large U, the gap of this mode vanishes at
q=0. In Fig. 6 we show the dispersions of the two lowest-
energy modes at V=4.2 and U=24, close to the transition. It
is clear that the Q mode is the lowest-energy mode for a
substantial part of the BZ.

At a generic transition, however, the gap of the Q mode at
q=0 does not vanish. Summarizing the behavior of the Q
mode over the entire range of V we investigated, we present
Fig. 7, which shows the Q-mode gap as a function of V for
U=8. We also examined the “wave functions” of the Q mode
near the transitions. The � component appears to be strongly
peaked at the vortex/antivortex cores while the z component
is more broadly distributed. Roughly speaking this may be
understood in terms of motion of the merons around their
minimum potential sites, with a very flat effective curvature,
indicating that “room” for further merons is developing in
the potential well. �Similar behavior has been observed in
simulations of this system using an XY model.30� Moreover,
the Q-mode dispersion is typically quite flat, indicating that
these are fairly well-localized excitations. Another interest-
ing point to note, shown in Fig. 8, is that there are large
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fluctuations of the G-mode velocity as V changes. It should
be kept in mind that these are results to quadratic order in the
fluctuations around the ground-state configuration. Interac-
tions between the G and Q modes could affect the gap of the
Q mode and the spin-wave velocity as well.

B. Ground-state spin stiffness

Another related quantity of interest for this system is the
spin stiffness, which determines among other things the in-
teractions between highly separated vortex-antivortex pairs.
We begin by describing how it may be computed for an
arbitrary ground-state configuration. We define the spin stiff-
ness by calculating the energy U for a particular spatially
dependent configuration of � and comparing it to the refer-
ence energy Ucont of the same configuration in a free con-
tinuum model,

Ucont =
1

2
Ks� d2r����2. �27�

The least expensive way to twist the system is controlled by

the smallest eigenvalue of the Hessian H̃�k� as �k�→0. Note
that these eigenvalues are not the same as the energies of the
eigenmodes found in Eq. �23�, which are the solutions to the
dynamical problem. We consider a sample with lengths
Lx ,Ly in the x and y directions, respectively. We denote the

eigenvalues of H̃�k� as �n�k� and the corresponding eigen-
vectors as �n�k ,r ,s�. �Here s=1,2 correspond, respectively,

to fluctuations of � and �.� Since H̃ is Hermitian and repre-
sents a stable ground state, the eigenvalues are all positive
semidefinite, and the eigenvectors are normalized in the
usual way,


�n�k��†�n��k� = �nn�. �28�

We can express a generic fluctuation � of the phase field
��r� from the ground state at any r inside the unit cell in the
presence of a unit amplitude of the lowest eigenvector, which
we call �0�k�, as

��r� =
1

�Nc
	
k

	
n

eik·rpn�k��n�k,r,2� , �29�

where Nc=
LxLy

N2a2 is the number of unit cells. The reality of � ,�
forces pn

��k�= pn�−k� with the convention that �n
��k�=�n�

−k�. The energy of such a fluctuation is easily seen to be

U = 	
k,n

�n�k��pn�k��2. �30�

To make the calculation convenient, we choose kmin

=kx,minêx with kx,min= 2�
Lx

being the minimum nonzero value
allowed. Then, bearing in mind the reality of �, we can ex-
press this as

0 0.05 0.1 0.15 0.2

k
x

0

0.01

0.02

0.03

0.04

0.05

0.06

E

FIG. 6. �Color online� The two lowest collective modes for V
=4.3 and U=18. This is just before the transition from the uniform
ferromagnetic state to a striped state and is generically second-order
at sufficiently large U. Note the almost gapless quadratically dis-
persing mode.
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FIG. 7. The gap at q=0 of the Q mode as a function of V. Note
that it does not generically vanish at a transition, though there are
transitions where it becomes particularly small.
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FIG. 8. The spin-wave velocity of the G mode as a function of
V. Note that it never vanishes, but that it can vary by a factor of 3,
and have significant discontinuities at transitions.
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��r� =
2

�Nc

p0�kmin��0�kmin,r,2�sin�2�x

Lx
� . �31�

Comparing the energy of Eq. �30� to that of the continuum
version, Eq. �27�, we obtain

Ks =
�0�kmin�

N2a2kmin
2 ��0�kmin,r = 0,2��2

. �32�

To be precise, this is the spin stiffness computed at T=0,
because thermal fluctuations have not been included.

The results for the spin stiffness �Fig. 9� as a function of
potential strength V show pronounced jumps. The disconti-
nuities in Ks coincide with transitions in the topological den-
sity of the ground-state configuration. Notice that the spin
stiffness is generally on the order of J, the nearest-neighbor
ferromagnetic coupling in Eq. �5�. Depending on the topo-
logical density in the ground-state configuration, Ks /J can be
either significantly enhanced �for example, V /J�8.15� or
reduced �for example, 3.75�V /J�5.5�.

IV. FLUCTUATION EFFECTS

In a purely quadratic theory, fluctuations will have little
effect on most quantities of interest. However, the Hamil-
tonian of our system contains nonlinear couplings which can
have important qualitative effects. Already included in our
ground-state analysis is the underlying O�3� nature of the
spins, which supports the �charged� merons that are induced
by the periodic potential. Thermal fluctuations in which
meron-antimeron pairs are generated above the ground state
can spoil the spin stiffness of the system, rendering it dissi-
pative, above an effective KT transition temperature. In prin-
ciple, interlayer tunneling may have even more profound ef-
fects, for example, removing the possibility of a true
thermodynamic KT transition in the clean limit.9,29 In this
section we describe how fluctuation effects in this model can
greatly suppress the impact of interlayer tunneling, and fur-
thermore lead to a lowering of the KT transition temperature,
particularly near transitions between different ground states.

A. Suppression of interlayer tunneling by collective modes

We begin with an evaluation of the effective �i.e., renor-
malized� interlayer tunneling amplitude due to quadratic
fluctuations around the ground state. As discussed in Sec. I,
this can be greatly depressed by the presence of the Q mode,
particularly if the gap is quite small, as sometimes happens
in the vicinity of a ground-state transition.

The fluctuations around the ground state can be expanded
as

w�r,s,t� =
1

�Nc
	
k,�

w̃��k�ei�k·r−��t����k,r,s� , �33�

where Nc is the number of unit cells in the lattice and w̃��k�
is the amplitude of w in the mode � ,k. The reality of w

means that 
���k��� is an eigenvector of H̃�−k� with eigen-
value −���k�, that is


���k,r,s��� = �−��− k,r,s� , �34�


w̃��k��� = w̃−��− k� . �35�

Now we are ready to re-express the action in terms of these
modes. In order to carry out thermal averages, we use the
imaginary time path integral

− S = �
0

�

dt�	
r

i

2

��r��̇�r� − ��r��̇�r��� �36�

�−
1

2 	
rr�,ss�

w�r,s�Hss��r,r��w�r�,s��� . �37�

When we expand in normal modes, w̃ now acquires a depen-
dence on i�n as well,

w�r,t� =
1

��Nc
	

i�n,k,�
w̃��k,i�n�ei�k·r−�nt����k,r� , �38�


w̃��k,i�n��� = w̃−��− k,− i�n� . �39�

The last condition means that we can take w̃��0�k , i�n� over
the entire BZ and for all i�n to be independent while the
w̃��0 are dependent. Substituting the expansion for �w in
terms of the normal modes and using the properties of the
wave functions, Eqs. �25�, �26�, and �35�, we obtain

− S =
1

�
	

i�n,k,��0
�w̃�i�n,k,���2
i�n − ���k�� . �40�

As can be seen, the real part of −S is negative definite, as it
should be for the convergence of the path integral. This
simple form for the action leads to

�w̃��k,i�n�w̃���k�,i�n��� =
��,−���k,−k���n,−�n�

i�n − ����k��
. �41�

Now we are ready to find the correlation functions of the
fluctuations w. The simplest is �
w�r��2�. Clearly, this will be

0 2 4 6 8
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0.5

1

1.5

2

Κ
s

FIG. 9. Spin stiffness as a function of potential strength V nor-
malized to nearest-neighbor ferromagnetic exchange J.
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�
w�r,s��2� = −
1

Nc�
	

i�n,k,��0

����k,r,s��2

i�n − ���k�
. �42�

The sum over i�n can be done by standard methods to get
n��k�+ 1

2 , where n��k�= 
exp ����k�−1�−1 is the boson oc-
cupation function, so that

�
w�r,s��2� =
1

Nc
	

k,��0
����k,r,s��2�n��k� +

1

2
� . �43�

We now consider the effect of these fluctuations on interlayer
tunneling. The effect as we shall see is most pronounced
where the Q-mode gap is small. In our periodic model this
occurs at specific values of V; in a real disordered sample,
there will always be regions where this is true. We add to our
original Hamiltonian a small interlayer tunneling term,
which may be written in the form

HILT = − h	
r

�1 − z�r�2cos ��r� . �44�

We approximate the Q-mode dispersion as

�Q�k� = EQ0 + �k2. �45�

We now consider fluctuations of ��r� which consist of two
low-energy parts, one controlled by the G mode and the
other controlled by the Q mode, under the assumption that T
is much smaller than the energies of the other modes. We
thus write

��r� = �G�r� + �Q�r� . �46�

We then integrate out the Q mode to obtain a “renormalized”
interlayer tunneling term,

HILT,R = − h	
r

�1 − z�r�2cos �G�r�e−��Q�r�2�/2. �47�

Using Eqs. �43� and �45�, we rewrite the last exponential as

exp�
BZ

d2k

�2��2 ��Q�k,r,2��2�nQ�k� +
1

2
� . �48�

For TEQ0 one can approximate the occupation number of
the Q mode as

nQ�k� �
T

EQ0 + �k2 , �49�

so that as EQ0→0, one obtains a logarithmic divergence in
the k integral, provided �Q�k ,r ,2� remains nonzero as k
→0. We have verified that indeed it does, leading to a renor-
malization of h of the form

hR � he−Tl2 log �/EQ0/�. �50�

Thus, in situations where EQ0→0, h is strongly suppressed.

B. Suppression of TKT

Recall that at a generic transition in our periodic potential
model EQ0 does not vanish. However, as we will now show,
the Berezinskii-Kosterlitz-Thouless transition temperature

TKT separating the low-temperature, quantum Hall ferromag-
net phase from the high-temperature, paramagnetic phase is
nevertheless strongly suppressed near transitions. Physically,
this is because there are two local minima with nearly the
same energy but different topological density. This makes it
very easy for the system to screen vortex/antivortex charge,
leading to a very small core Ec energy for vortices.

To see this quantitatively, we introduce and analyze an
effective, two-dimensional Coulomb gas description of the
bilayer quantum Hall ferromagnet. At finite temperature T,
we approximate the partition function of the quantum Hall
ferromagnet Z�	�m�R��exp�−E
�m�R��� /kBT� as a sum over
the positions of vortices �m�R�� with a Coulomb gas energy
functional

E�
m�R��� =
1

2 	
R�R�

Ksm�R�m�R��log� �R − R��
�

�
− Ec�V�	

R

m�R��2, �51�

where Ks is the bare spin stiffness computed in Sec. III B,
m�R� is the vorticity of a plaquette at position R, � is an
ultraviolet cutoff scale, and Ec is the core energy of each
vortex/antivortex, whose value depends on V, the potential
strength, through the potential-dependent details of meron
core structure.

To estimate Ec�V�, we compare the T=0 ground-state en-
ergy �computed in Sec. II� of the two competing states whose
energies cross at the critical potential strength Vc. In the sim-
plest case state 1 is a topologically trivial configuration with
no vortices, and state 2 has two + and two − vortices in a
checkerboard pattern in the unit cell. �See, for example, the
configuration shown in Fig. 1.� Generically, they cross with
some slope, with the energy difference per site being

�E = E2 − E1 = ��V − Vc� , �52�

where Vc is the transition point. We obtain ��0.12 numeri-
cally by comparing the energies of the ground and meta-
stable states near Vc. Without loss of generality, we choose
the vortex core size � in Eq. �51� such that the vortex core
energy vanishes as one approaches the transition. Together
with Eq. �52�, this choice implies the following form for the
vortex core energy in the vicinity of the transition at Vc:

Ec �
�

4
�V − Vc� . �53�

Note that as one passes through the transition, the high- and
low-energy states interchange roles, and Eq. �51� still gov-
erns the fluctuations of the system for V�Vc, with the “ab-
sence of a vortex” playing the role of vortices in the free-
energy functional. Thus the vortex core energy Ec�V� is non-
negative across the transition at Vc.

Following the standard analysis9 of the two-dimensional
Coulomb gas, Eq. �51�, we find an implicit equation for TKT
in terms of the vortex core energy Ec and the ground-state
spin stiffness Ks,
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Ec � kBTKT�ln� 1
�2�

�1 −
2kBTKT

�Ks
��� . �54�

We plot in Fig. 10 the result of numerically solving Eqs.
�53� and �54� for TKT as a function of the potential strength
V. This is one of the central results of this paper. Note that
typically, TKT is suppressed by an order of magnitude com-
pared to the Hartree-Fock predictions for a bilayer quantum
Hall ferromagnet with no periodic potential.

Near the ground-state transitions, the sharp reduction in
Ec, the core energy for vortex excitations, described by Eq.
�53�, is the principal cause of the dramatic suppression of the
low-temperature quantum Hall ferromagnet phase. Far from
the ground-state transitions, a secondary effect of the peri-
odic potential on the phase diagram arises through the
ground-state spin stiffness Ks: kBTKT→�Ks /2 for �V−Vc�
2�Ks /�. As shown in Fig. 9, the periodic potential re-
duces Ks dramatically for some values of the potential
strength V, leading to a suppression of TKT compared to the
transition temperature in the absence of a periodic potential.

The Coulomb gas description, Eq. �51�, is expected to
overestimate TKT since it contains only a single type of vor-
tex, and focuses on the spin configurations �states 1 and 2�
with the lowest T=0 energy. In the critical regime V�Vc we
observe numerically that the T=0 energy of other states ap-
proach that of states 1 and 2. Describing the effects of these
other states would require generalizing Eq. �51� to consider
multiple types of vortices. On general grounds, one expects
that including more types of vortex fluctuations reduces the
finite-temperature stability of the bilayer quantum Hall fer-
romagnet phase, so the result reported in Fig. 10 is expected
to be an upper bound on TKT.

V. CONCLUSIONS, CAVEATS, AND OPEN QUESTIONS

It has been clear for some time that there are qualitative
discrepancies between theoretical predictions for clean sys-
tems and the actual phenomenology of �=1 quantum Hall
bilayers at small layer separation. There is a wide consensus
in the community that these discrepancies are due to
quenched disorder.

Our goal in this paper is to investigate some of the non-
perturbative effects of quenched disorder in balanced �=1
quantum Hall bilayers. Our principal premises are: �i� a
strong periodic potential can mimic some of the nonpertur-
bative effects of disorder and �ii� one needs to focus only on
the �pseudo�spin physics. While these premises 
especially
�i�� can be debated in the context of bilayer quantum Hall
systems, there is ample historical evidence of the fruitfulness
of �i� in the Bose-Hubbard model and the problem of the
quantum Hall plateau transition. Other limitations of this
work include the neglect of the antisymmetric disorder po-
tential 
Eqs. �6� and �7��, the neglect of long-range Coulomb
interactions between induced topological densities, the ne-
glect of the renormalization of the classical ground states we
found due to fluctuations, the neglect of interactions between
the low-lying modes, especially the G and Q modes, and the
perturbative treatment of the interlayer tunneling. We see this
work as a first step in a systematic investigation of these
effects.

Starting from the �rather minimal� model Hamiltonian,
Eq. �5�, we study the ground states and the collective exci-
tations numerically for interlayer tunneling h=0. As the
strength of the periodic potential increases, we observe ge-
nerically first-order transitions between states with different
topological densities. Note that because we have neglected
the antisymmetric disorder potential, which tends to favor a
local layer imbalance, we obtain doubly degenerate states
with globally opposite values of Sz for the merons in each
puddle. The inclusion of the antisymmetric potential 
Eqs.
�6� and �7�� will pick a particular Sz for each meron but not
affect our other results qualitatively. Occasionally, the tran-
sitions we observe are weakly first order, with a new, charge-
carrying, quadratically dispersing mode becoming nearly
gapless at the transition. Such a mode can suppress the inter-
layer tunneling amplitude strongly at nonzero T. Even when
the transitions are strongly first order, we show that vortices
become very easy to create, and drive the Berezinskii-
Kosterlitz-Thouless transition temperature to zero at the tran-
sition.

It is important to note that there is a qualitative difference
between weak and strong h in our approach. While our nu-
merics are carried out only for h=0, the inclusion of an in-
terlayer tunneling amplitude much smaller than any other
energy scale will not affect any of the qualitative physics we
uncover. However, if the strength of the interlayer tunneling
h is increased while other parameters such as Ec and the
strength of the periodic potential V are kept fixed, we expect
the system to undergo a set of ground-state phase transitions
leading ultimately to the uniform ferromagnetic ground state
at very large h. This qualitative distinction between weak and
strong tunneling does not exist in the clean model9 but is
consistent with experiments.
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FIG. 10. Finite-temperature phase diagram of the bilayer quan-
tum Hall ferromagnet in a periodic potential V �measured in units of
J the nearest-neighbor ferromagnetic exchange energy using a
16�B
16�B unit cell with local Coulomb repulsion energy U=8J�.
Dramatic decreases in the transition temperature TKT �measured in
units of J /kB� separating the low-temperature ferromagnetic phase
from high-temperature paramagnetic phase occur due to changes in
the topological density of the ground state at critical potential
strengths.
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Based on our results for the periodic potential, we can
speculate about the effects of true quenched disorder. There
are several important effects: first, it can be shown via a
mapping to the random-field Ising model57 that disorder con-
verts the sequence of first-order transitions we found as V
increases into a sequence of second-order transitions. While
this mapping is rigorously provable only for classical mod-
els, it is believed to hold for many quantum phase transitions
as well58,59 �the exceptions seem to be transitions that are
completely smeared out and destroyed by disorder60�. This
sequence of second-order transitions maintains the qualita-
tive distinction between weak and strong tunneling men-
tioned earlier. Furthermore, at the quantum level, this implies
that the Q mode generically becomes gapless at ground-state
transitions with true disorder. Second, even away from a
ground-state transition, in a system with quenched disorder
there will be large regions which are close to a transition �the
system is in a Griffiths phase61�. Being in a Griffiths phase
also means that excitations of arbitrarily low energy are
available from large rare regions close to the transition,
which leads to divergent low-frequency susceptibilities
throughout the Griffiths phase62 at T=0. For T�0, since
vortices are easy to create in such regions, TKT is expected to
be strongly suppressed throughout the sample. This is con-
sistent with the fact that no low-temperature phase with the
phenomenology of the BKT power-law phase �including a
Josephson-type delta-function peak in the interlayer conduc-
tance� has yet been observed in experiments. This suggests
two possibilities: �i� the true ground state of the system at
T=0 is ferromagnetically ordered but current experiments
have probed only the T�TKT regime. �ii� The true ground
state is quantum disordered due to some combination of
quantum fluctuations/quenched disorder.

Even in the more conventional possibility �i�, there are
several natural sources for the dissipation seen in experi-
ments. The dissipation could be due to unbound vortices in
the hydrodynamic transport regime63 ���kBT, and/or due to
the low-energy Griffiths Q modes.

A second aspect of disorder is that as one crosses domains
of different topological density, the spin-wave velocity varies
sharply. This is expected to lead to chaotic reflections of spin
waves leading to a diffusivelike behavior at macroscopic
length scales.64

Yet another aspect concerns the critical counterflow ve-
locity, which determines the critical counterflow current. In
regions where the Q mode has a very small gap, the critical
velocity will also be small, and nonlinear/dissipative
effects25 will be visible at very tiny counterflow current.
Similar physics holds for the critical interlayer tunneling cur-

rent density. Some recent work takes the point of view that
perhaps the experiments are in the T�TKT regime but the
smallness of the critical tunneling current density is a pri-
mary mechanism driving the observed dissipation.43

Let us now turn to issues of zero-temperature physics. It
is possible that fluctuations quantum disorder the ground
state �even in the periodic-potential model� near the mean-
field ground-state transitions that we found. Clearly, one
needs an effective theory of the low-lying modes and their
interactions to address these issues. An important source of
quantum disordering is the tunneling of �multiple� vortices.
Due to the spin-charge relation, the quantum tunneling
events �called hedgehogs� of a single vortex will violate
charge conservation. However, especially near transitions,
one can imagine multiple vortices in a unit cell with total
vorticity zero tunneling together. This has a connection to
ideas of deconfined criticality.65–67 In this type of scenario,
first described for quantum dimer65 models and quantum
antiferromagnets,66 dimers/spin excitations, are described as
composites of monomers/spinons. Single hedgehog events
are forbidden due to lattice symmetries but multiple hedge-
hogs are allowed. In certain well-defined extensions of quan-
tum antiferromagnets, the multiple-hedgehog events can be
shown to be irrelevant,68 leading to a critical point with de-
confined spinons.67

The important difference is that in the picture of the quan-
tum Hall bilayer presented here, it is not lattice symmetries
but the spin-charge relation53,54 which enforces the absence
of single hedgehog events. Thus, if deconfined criticality
were to occur for the periodic potential model, it would also
likely occur in the model with true disorder.

The quantum Hall bilayer remains a rich system which
potentially supports a host of physical behaviors yet to be
explored, particularly in the presence of strong disorder po-
tentials that are almost certainly a feature of their realization
in semiconductor systems. We believe immersing the system
in a periodic potential offers a window through which one
may begin an exploration of this physics.
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